Велосипедист ехал из одного города в другой. Половину пути он проехал со скоростью v1 = 12 км/ч далее половину оставшегося времени он ехал со скоростью v2 = 6 км/ч, а затем до конца пути шел пешком со скоростью v3 = 4 км/ч. Определить среднюю скорость велосипедиста на всем пути.

Решение.

а) Эта задача на равномерное прямолинейное движение одного тела. Представляем в виде схемы. При составлении ее, изображаем траекторию движения и выбираем на ней начало отсчета (точка 0). Весь путь разбиваем на три отрезка S1,S2, S3, на каждом из них указываем скорости v1, v2, v3 и отмечаем время движения t1, t2, t3.

S = S1 + S2 + S3, t = t1 + t2 + t3.

б) Составляем уравнения движения для каждого отрезка пути:

S1 = v1t1; S2 = v2t2; S3 = v3t3

и записываем дополнительные условия задачи:

S1 = S2 + S3; t2 = t3;

 .

в) Читаем еще раз условие задачи, выписываем числовые значения известных величин и, определив число неизвестных в полученной системе уравнений (их 7: S1, S2, S3, t1, t2, t3, vср), решаем ее относительно искомой величины vср.

Если при решении задачи полностью учтены все условия, но в составленных уравнениях число неизвестных получается больше числа уравнений, это означает, что при последующих вычислениях одно из неизвестных сократится, такой случай имеет место и в данной задаче.

Решение системы относительно средней скорости дает:

.

г) Подставив числовые значения в расчётную формулу, получим:

;

vср 7 км/ч.

Напоминаем, что числовые значения удобнее подставлять в окончательную расчетную формулу, минуя все промежуточные. Это экономит время на решение задачи и предотвращает дополнительные ошибки в расчётах.

 

Сайт создан в системе